某高层建筑设计及分析

土硕 14 王萌资 2014210126

1.PKPM 设计

1.1 工程概况及设计条件

某办公楼,8 度抗震设防,第一组,II 类场地,抗震等级为一级,10 层现浇钢筋混凝土框架结构,无地下室,层高 3.6m,首层室内地面标高 0.00,室外标高-0.50m,基础顶面标高-1.20m;平面尺寸:长 6m x 7 跨=42m,宽 6m x 2 跨=14m,梁板的混凝土强度等级为 C30,柱混凝土强度等级为 C50 (1~4 层)、C40 (5~7 层)、C30 (8~10 层)。

假设楼面与屋面除结构重量外的地面做法与吊顶等的等效面荷载按照 2.0kN/m2 计算,楼面与屋面活荷载均按照 2.0kN/m2 考虑。没有女儿墙。假设外围及沿轴线维护墙与隔断墙的等效线荷载为 6kN/m。假设梁截面尺寸: 250×500 毫米;柱截面: 600×600 毫米(1~4 层)、500×500 毫米(5~7 层)、450×450 毫米(8~10 层)。

1.2PKPM 设计结果检查

(1)位移比

《高规》4.3.5 条规定, "在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移角,A级高度高层建筑不宜大于该楼层平均值的1.2 倍,不应大于该楼层平均值的1.5 倍; B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2 倍,不应大于该楼层平均值的1.4 倍。"

从直观上判断,该办公楼结构规则,刚度均匀,检查"WDISP.OUT"文件,亦可验证 位移比满足规范要求。

(2)层间位移角

《抗规》5.5.1 和《高规》4.6.3 条规定"按弹性方法计算的楼层层间最大位移与层高 之比 Δu/h 宜符合以下规定",其中钢筋混凝土框架的弹性层间位移角限值为 1/550。检 查发现 y 方向的最大层间位移角为 1/495,不满足规定的要求,且柱的轴压比比较小,故 修改梁的高度,框架梁的跨高比一般在 1/12~1/8 的范围内,取梁高为跨度的 1/10,即 600mm,最大层间位移角降到 1/629,满足规范要求。

(3)周期比

《高规》4.3.5 条规定,结构扭转为主的第一周期 T_t与平动为主的第一周期 T₁之比, A 级高度高层建筑不应大于 0.9; B 级高度高层建筑、混合结构高层建筑及复杂高层建筑 不应大于 0.85。检查"WZQ.OUT"文件,可验证周期比满足规范要求。

(4)层间刚度比

《抗规》4.4.2 条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上 部楼层侧向刚度的 70%或其上相邻三层侧向刚度平均值的 80%。检查"WMASS.OUT"文件,可验证刚度比满足规范要求,

(5)层间受剪承载力比

《高规》4.4.3 规定,A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于上一层受剪承载力的 80%,不应小于上一层受剪承载力的 65%;B 级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于上一层受剪承载力的 75%。检查"WMASS.OUT" 文件,可验证层间受剪承载力比满足规范要求,

(6)剪重比

《抗规》5.2.5 条规定剪力系数不应小于表 5.2.5 规定的楼层最小地震剪力系数值, 检查 "WZQ.OUT" 文件, 整层最小剪重比为 3.49%, 满足 3.20%的规范要求。

(7) 刚重比

《高规》5.4.4 条规定,高层建筑结构的稳定应符合下列规定。检查"WMASS.OUT" 文件,该结构刚重比 Di*Hi/Gi 大于 10,能够通过高规的整体稳定验算。

(8)轴压比

《抗规》6.3.6 规定, 柱轴压比不宜超过表 6.3.6 的规定。对于钢筋混凝土框架结构 不宜超过 0.65, 检查满足要求。

1.3 构件设计

取弱轴方向一榀平面框架计算,构件编号以及各构件截面尺寸、配筋如图1所示。

图 1.1 各构件配筋图

2.RESPONSE 分析截面特性

2.1 截面特性分析结果

在 response 中分析各构件的截面特性,作为 Sap2000 中塑性铰的输入参数。

梁 L1 的配筋上下不对称,故正反向的M – Φ曲线不对称。而梁 L2 和柱的配筋都是对称的,正反向的M – Φ曲线对称,图 2 中仅给出正向的M – Φ曲线。另外,柱在不同轴力 N 下的M – Φ曲线不同,偏安全地,将 PKPM 计算结果中各层柱的最大轴力提出,作为固定轴力,在 response 中计算柱的M – Φ曲线。其中,柱 Z1、Z2、Z3、Z4 的固定轴力分别取-2885KN、-2569KN、-1675.6KN、-815.7KN。

图 2.2 Z1 的M - Φ曲线和 M-N 曲线

图 2.3 Z2 的M - Φ曲线和 M-N 曲线

图 2.5 Z4 的M - Φ曲线和 M-N 曲线

2.2 截面特性简化及塑性铰参数

对 2.1 中的结果进行简化, 形成 Sap2000 中塑性铰的输入参数。M – Φ曲线的简化参数见表 2.1 和图 2.6。

	I	_1	L2		Z1	
关键点	$\Phi_{\rm p}$	М	$\Phi_{\rm p}$	М	$\Phi_{\rm p}$	М
	rad/m	KN • m	rad/m	KN • m	rad/m	KN•m
E-	-0.115	-75.60				
D-	-0.086	-75.60			- 1	7L
C-	-0.078	-333.55	XŢ	秋	স্য	称
B-	0.000	-306.51				
А	0.000	0.00	0.000	0.00	0.000	0.00
В	0.000	161.63	0.000	101.53	0.000	1029.92
С	0.096	229.18	0.097	149.69	0.014	1108.48
D	0.106	6.93	0.107	6.27	0.014	221.70
Е	0.146	6.93	0.117	6.27	0.029	221.70

表 2.1 各构件M – Φ曲线简化参数表

表 2.1 各构件M – Φ曲线简化参数表(续)

	Z	22	Z	Z3		4	
关键点	Φ _p	М	$\Phi_{\rm p}$	М	$\Phi_{\rm p}$	М	
	rad/m	KN • m	rad/m	KN • m	rad/m	KN • m	
E-							
D-	4	长		<i>т</i> ь	-1-11		
C-			XJ	对称		对称	
B-							
А	0.000	0.00	0.000	0.00	0.000	0.00	
В	0.000	823.29	0.000	508.05	0.000	272.11	
С	0.017	928.31	0.017	546.63	0.021	304.93	
D	0.017	185.66	0.017	109.33	0.021	60.99	
E	0.030	185.66	0.028	109.33	0.037	60.99	

图 2.6 各构件M - Φ曲线简化

3.基于 SAP2000 的结构性能化评估和弹塑性分析

3.1 Sap2000 建模

建模步骤如下:

(1)选取计算模型量纲: N, mm, C。

(2)选择"二维框架"模板建立框架模型,层高取 3600mm,并将底层修改为 4800mm。

(3)修改约束。将底层约束修改为固支。

(4)按照 PKPM 设计的结果定义材料和截面属性。并考虑两侧楼板的影响对梁的刚度进行修正,修正系数为 2。

(5)将定义好的 L1、L2、Z1、Z2、Z3、Z4 截面指定给对应的构件。见图 3.1(a)。

(6)定义荷载工况。分别定义 MODAL、DEAD、Pushover 三种工况。其中静力推覆工况 Pushover 示意图如图 3.2 所示,具体分析参数的设置见图 3.3,图 3.4,和图 3.5。

(7)添加荷载。将沿建筑纵向的围墙和隔断墙重量简化为柱顶的竖向集中荷载, F = 6 × 6 = 36KN;梁上的线荷载按1 倍恒载+0.5 倍活载进行组合,恒荷载为 6KN/m(均 布)+2×3÷2=3KN/m(三角形),活荷载为 2×3÷2=3KN/m(三角形);推覆水平荷载 采用倒三角形分布模式(图中仅反映力的方向,不反应力的大小关系)。见图 3.1(b)、图 3.1(c)和图 3.1(d)。

「氣」/元釵指 - Nonlinear Static	
荷载工况名称 Notes Pushover 设置定义名	「荷载工况类型」 Static
 初始条件 零初始条件 - 从零初始应力状态开始 ● 从上次非线性工况终点状态继续 DEAD_wall ▼ 重要注释: Loads from this previous case are included in the current case 	 分析类型 ● 线性 ● 非线性 ● 非线性阶段施工
模态荷载工况 所有施加的振型荷载使用来自工况模态 MODAL ▼ 施加的荷载	 □ 几何非线性参数 □ 元 □ P_Δ □ P_Δ □ P_Δ
荷载类型 荷载名称 比例系数 Load Patterr ▼ Pushover ▼ 1. Load Pattern Pushover 1. 添加(Δ) 修改(M)	
単除D 単除D 単称D 単称D	福元
施加荷軟 Dispi Lontrol 修改/显示 结果保存 Multiple States 修改/显示 非线性参数 User Defined 修改/显示	

图 3.2 SAP2000 中静力推覆分析工况参数定义

 荷载施加控制 ○ 荷载控制 ○ 位移控制 	 ─结果保存 ● 仅最终状态 ● 多个状态
控制位移 ○ 使用耦合位移 ● 使用监测位移 加载到监测位移值	对每个阶段 保存状态的最小数里 100 保存状态的最大数里 600
监测位移 ● 冒田 U1 ● 古田 U1 ● 古田 U1	 ✓ 仅保存正位移增量 <u>通常</u> 取消
图 3.3 加载控制参数	图 3.4 结果保存参数

11 非线性参数		X
□材料非线性参数		
☑ 框架单元单拉/压	每阶段最大总步数	2000
▶ 框架单元铰	每阶段最大空步数	1000
☑ 索单元单拉	每步最大Constant-Stiff迭代数	20
☑ 缝/钩/弹簧非线性连接属性	每步最大Newton-Raphson迭代数	40
☑ 其它非线性连接属性	迭代收敛容差(相对)	1.000E-03
▶ 时间相关材料属性	使用事件到事件步	Yes 💌
	事件凝聚容差(相对)	0.01
	每次迭代最大线搜索	20
	线性搜索加速度容差(相对)	0.1
	线性搜索步比例	1.618
	└────────────────────────────────────	
◎ 去载整个结构	每一步的最大循环数	10
◎ 应用局部重新分布	收敛容差(相对)	0.01
 使用割线刚度重新开始 	加速度因子	1.
	如果不收敛继续分析	Yes 💌

图 3.5 非线性参数

(8)定义塑性铰。梁采用 M3 铰; 柱采用 PMM 铰。将第二节 Response 的分析结果简 化后,输入塑性铰的参数。梁的 M3 铰需要输入截面的M – Φ曲线,如 L1 的 M3 塑性铰 属性参数见图 3.6 所示。柱的 PMM 铰除M – Φ曲线外,还需输入 P-M2-M3 相关面数据, 因为 Response 计算的是截面的破坏面,将其乘以折减系数 0.8 后作为 SAP2000 中输 入屈服面的数据,并且由于选用的是平面简化模型,故屈服面可选择为"旋转对称" (对于三维模型应分别输入 P-M2 和 P-M3 曲线),Z1 的 PMM 塑性铰参数见图 3.7、 图 3.8 所示。

(9)运行分析。

建较属性数据 L1 - Moment M3						
编辑(E)						
位移控制参数	ħ					
Point	Moment/SF	Curvature/SF		◎ 弯矩·转角		
E	-75.6048	-0.1153				
D-	-75.6048	-0.0861	i i i i i i i i i i i i i i i i i i i			
C-	-333.552	-0.0778		· · · · · · · · · · · · · · · · · · ·		
B-	-306.514	0.	•	☑ 相对长度		
A	0.	0.				
В	161.626	0.		Hysteresis Type and Parameters		
<u> </u>	229.18	0.096		Husteresis Tupe		
D	6.932	0.106	厂 对称的			
	6.932	0.1461		No Parameters Are Required For This		
	n:+.==n			Hystelesis Type		
「「「「「「「」」」	500円B					
● 调整到	副零					
● 外推						
_ ஆக்கள் க						
马起机面子	₽VGD/J	т	岛			
		SE 100000	100000			
1 使用方	出版弓炮 弓炮	SF [1000000.	1000000.			
□ 使用加 (12)対策	屈服曲率 曲率 钢对象)	比例系 1.000E-03	1.000E-03			
□────────────────────────	塑性曲率/SF)					
<u> </u>		<u>E</u>	负			
直接 直接	6使用(10)	3.000E-03	-3.000E-03			
📃 🗖 生命	资全(LS)	0.048	-0.039	[确定] 取消		
📃 防止	上坍塌(CP)	0.09	-0.075			
□ 绘图中	显示容许准则					

P-M2-M3相关面的定义 Z1		
编辑(E)		
□ 自定义相关面选项	┌相关曲线数据─────	
 ・	当前曲线 1 ▼	
M2和 M3双向对称		
● 无对称	Point P M2	M3 🔺 🔶
曲线教理 1	1 -19659. 0.	0.
	2 -18361. 212.	. <u>0.</u> P·M2
日本 日	4 -16116 542	
└ 比例系数(对所有曲线相同)	5 -15277. 705.	0.
<u> </u>	6 -14259. 859.	. 0.
800. 800000. 800000.	7 -13152. 1022	
□ 绘图中包含比例系数 N, mm, C ▼	9 .10172 1204	
	10 -8120. 1489	
「第一和最后一点 図所有曲线相同 	11 -6150. 1498	3. O. 🚽
	插入曲线 删除曲线	① 校核表面 M2-M3
, , , , , , , , , , , , , , , , , , , ,		
│ ┌交互面前提・辐射对称 ────────────────────────────────────		
1. 仅指定1条 P-M2-M3曲线	→ 平面	线 PM3
2. P拉为正禅调增加	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	向线
3. M2=M3=0在第一和最后点	□ 1/1/m 1/25 ● 隐藏 M2-N	43线 64 412
4. 指定曲线具有 M3=0和 M2>0		
5. 每条曲线必须是凸的.相关面整体必须是凸的(表面无波纹)		
		l l
		J
	·····································] 取消

图 3.7 Z1 的 P-M2-M3 相关面定义

矩转角数据对 Z1 - Interacting	g P-M2-M3	
辑(E)		
─选择曲线	▼ 角度 0.	単位 ■ 曲线 #1 【 【 】 】 】 N, mm, C 】
Point Moment/Yield Mom	Curvature/SF	
A 0.	0.	
<mark>В</mark> 1.	0.	
C 1.0763	0.0141	
D 0.2153	0.0141	
E 0.2153	0.0292	
注息: 畑服点弩炮田相天面起 夏制曲线数据	E× 粘贴曲线数据	」
┌接受准则/塑性变形/SF)-		Force #1; Angle #1 轴力 = -2885000
直接使用(10)	3.000E-04	平面 315 轴向力 -2885000 🚆
📃 生命安全(LS)	0.007	标高 35
┣━━━ 防止坍塌(CP)	0.014	孔径角 0 显示容许准则
☑ 在当前曲线上显示功能	点	3D CC MC3 MC2 ▼ 加亮当前曲线
		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
对称条件	Circular	0度 "= 绕正 M2轴"
轴力值数里	1	90度 "= 绕正 M3轴" · · · · · · · · · · · · · · · ·
角度数量	1	180 度 "= 绕负 M2 轴" 面当
曲线总数	1	270度 "= 绕负 M3轴"

图 3.8 Z1 的M - Φ曲线定义

3.2 Pushover 分析

运行后 Pushover 曲线见图 3.9, 谱位移曲线见图 3.10。

图 3.10 谱位移曲线

性能点(V,D)=(371596.3, 71.178) 单位: N, mm

性能点(S_a,S_d)=(0.424, 52.180) 单位: mm/s⁻², mm

框架达到目标位移时各层层间位移角如表**3.1**,据层间位移角判断,框架没有明显的 薄弱层。

楼层数	水平位移	层间位移	层间位移角
	mm	mm	
1	9.50	9.50	1/505
2	21.15	11.65	1/412
3	33.52	12.37	1/388
4	45.10	11.57	1/414
5	55.65	10.56	1/454
6	63.48	7.82	1/613
7	69.51	6.03	1/796
8	75.17	5.66	1/847
9	79.34	4.17	1/1150
10	81.90	2.56	1/1872

表 3.1 结构达到目标位移时各层层间位移角

达到目标位移时框架出铰情况如图 3.11:

图 3.11 目标位移时框架出铰情况

3.3 EL-Centro 波时程分析

建模步骤:

(1) 导入 ELCENTRO-NS 波作为分析地震波。ELCENTRO-NS 波的峰值加速度为 3417mm/s²,为满足峰值加速度 0.4g 的要求, 故输入比例系数取 0.4X9.8/3.417=1.147。

图 3.12 导入 ELCENTRO-NS 波

(2)定义新的荷载工况 Timehistory。采用直接积分法进行分析,考虑 P- △效应和大 位移。阻尼、积分参数和非线性参数的设置见图 3.14、3.15 和 3.16 所示。

苛载工况名称	Notes		┌荷载工况类型──	
Timehistory 设置	<u>龍文名</u> 修改尽	显示	Time History	▼ 设计
刃始条件				┌─时程类型─────
◎ 零初始条件·从零初始应力:	状态开始		◎ 线性	● 振型
◎ 从上次非线性工况终点状态	继续 DEAD_	wall 💌	◎ 非线性	● 直接积分
重要注释: Loads from th	nis previous case are includ	ed in the	└ ┌ D 何非线性参数 -	
current case			0 无	
莫态荷载工况 —————			© P-∆	
使用从工况得到振型	MODAL	. 🔻		
あかの荷載				
Accel U1 Accel U1	EL-CENTRO 1.147 EL-CENTRO 1.147	•	添加(4)	
Accel U1	EL-CENTRO 1.147	•	添加(A) 修改(M) 删除(D)	
Accel	EL-CENTRO 1.147	•	添加(2) 修改(20) 删除(2)	
Accel	EL-CENTRO 1.147	•	添加(<u>A</u>) 修改(<u>M</u>) 刪除(<u>D</u>)	时程运动类型
Accel □ □ □ Accel □ □ □ 显示高级荷载参数 寸间步数据 → 輸出时段数	EL-CENTRO 1.147	1000	添加(A) 修改(M) 删除(D)	─时程运动类型 ● 瞬态
Accel □ □ □ Accel □ □ □ 显示高级荷载参数 対间步数据 輸出时段数 輸出时段大小	EL-CENTRO 1.147	1000	添加(Δ) 修改(M) 删除(D)	 时程运动类型 ● 瞬态 ○ 周期
Accel □ □ □ Accel □ □ 显示高级荷载参数 寸间步数据 輸出时段数 輸出时段大小	EL-CENTRO 1.147	1000	添加(A) 修改(M) 删除(D)	 时程运动类型 ● 瞬态 ○ 周期
Accel □ <	Proportional Damping	▲ 1000 0.1 修改/	_ 添加(A) _ 修改(M) _ 删除(D)	- 时程运动类型 ・ 瞬态 ・ 周期
Accel □ <	Proportional Damping Newmark	↓ 1000 0.1 修改/ 修改/	_ 添加(A) _ 修改(M) _ 删除(D)	时程运动类型 ● 瞬态 ○ 周期

图 3.13 创建 Timehistory 工况

医量和刚度比例阻尼			X
─阻尼系数────		质量比例阻尼	刚度比例系数
 直接指定 用周期指定阻尼 用频率指定阻尼 		0.7893	2.490E-03
周期 第一 0.582 第二 0.214	频率 	阻尼 0.05 0.05	重新计算系 数

图 3.14 阻尼设置参数

时间积分参数		
「─方法」 ● Newmark	Gamma Beta	0.5

图 3.15 采用 Newmark 积分

非线性参数	- Martin - Martin	
┌材料非线性参数	┌求解控制	
▶ 框架单元单拉/压	最大子步长	0.
▶ 框架单元铰	最小子步长	0.
☑ 索单元单拉	每步最大Constant-Stilf选代数	10
☑ 缝/钩/弹簧非线性连接属性	每步最大Newton-Raphson迭代数	40
☑ 其它非线性连接属性	迭代收敛容差(相对)	1.000E-03
▶ 时间相关材料属性	使用事件到事件步	Yes 💌
	事件凝聚容差(相对)	0.01
	每次迭代最大线搜索	20
	线性搜索加速度容差(相对)	0.1
	线性搜索步比例	1.618

图 3.16 非线性参数设置

(3)运行分析。

结构的侧移包络值见表 3.2。

表 3.2 结构侧移包络值

楼层数	正向最大水平位移	负向最大水平位移	侧移包络值
	mm	mm	mm
1	9.04	-9.26	9.26
2	19.91	-20.16	20.16
3	30.81	-33.52	33.52
4	40.13	-46.68	46.68
5	47.87	-57.79	57.79
6	53.04	-64.33	64.33
7	56.48	-68.33	68.33
8	61.20	-71.18	71.18
9	65.25	-72.65	72.65
10	67.50	-73.39	73.39

通过定义广义位移的方法可以得到第1、3、5、7层的层间位移角包络值,见表3.3。

楼层数	正向最大层间位移角	负向最大层间位移角	层间位移角包络值
1	0.002512	-0.002574	0.002574
3	0.003027	-0.003712	0.003712
5	0.002366	-0.003086	0.003086
7	0.001637	-0.001808	0.001808

表 3.3 1、3、5、7 层的层间位移角包络值

底层层间位移角时程及最终的塑性铰分布分别见图 3.17 和 3.18。

图 3.18 最终的塑性铰分布