

霉菌路径仿生模拟

清华大学土木工程系

汇报人: 张汉青

指导老师: 胡振中

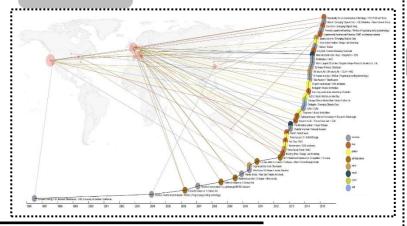
Email:

Zhang-hq15@mails.Tsinghua.edu.cn

主要内容

- 1、研究背景及意义
 - ——3D打印技术研究与应用
 - ——建筑参数化设计
- 2、研究内容
 - ——问题描述
 - ——方法选择
 - ——具体实现
- 3、讨论与展望
 - ——仿生模拟与3D打印技术

1.研究背景—3D打印发展前沿



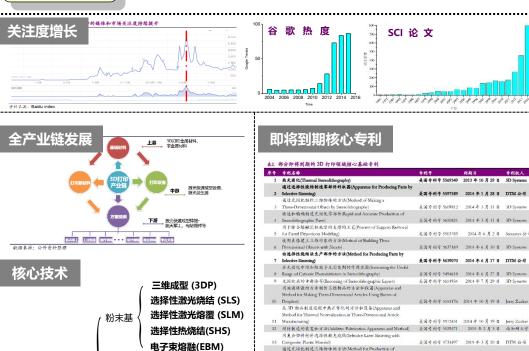
3D 打印 From the past to the future

时间轴

发展地图

- [1] http://www.3dprintingarchitecture.net/?p=601
- [2] USPTO
- [3] MX3D/IAAC/WASP/EMERGING OBJECTS

产业发展


增材制造技术

(3D打印技术)

增材/切削制造技术

切削制造技术

快速成型技术

政策支持

《中国制造 2025》

2015年上半年国家层面发布多项 3D 打印利好政策

到 2016 年,初步建立校为完善的增材制造产业体系、整体技术水平保持与 国际国告,在新它新关等自接制语征据法到国际争讲水平、在国际市场上占

1. 围绕重点行业转型升级和新一代信息技术、智能制造、增材制造、新材料

生物医药等领域创新发展的重大共性需求,形成一批制造业创新中心

挤出沉积成型 (EDM)

熔融沉积成型 (FDM)

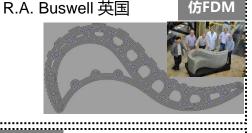
数字光处理成型 (DLP) 立体光固化成型 (SLA)

形状沉积制造 (SDM)

电脑数控切割 (CNC)

片状基 — 分层实体加工 (LOM)

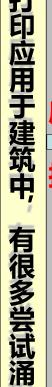
1.研究背景—3D打印发展前沿

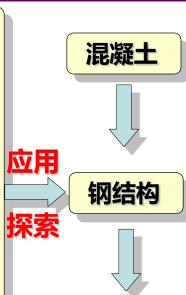


3D 打印在工程建设中的代表性技术体系

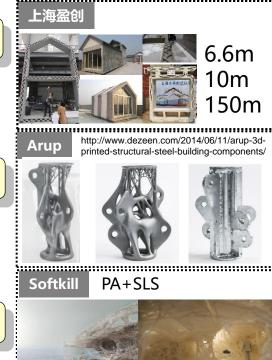
D-Shape

Concrete **Printing**



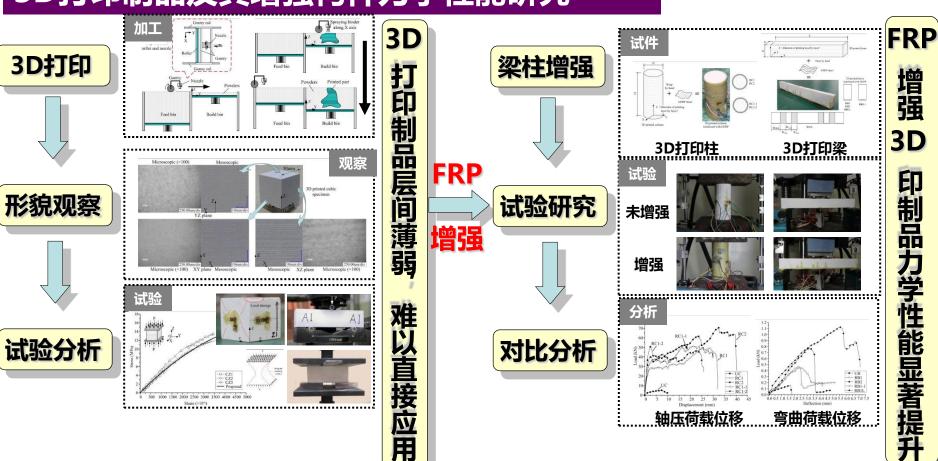

仿FDM

B. Khoshnevis 美国


Contour Crafting

纤维

[1] Lim S, Buswell R A, Le T T, et al. Developments in construction-scale additive manufacturing processes[J]. Automation in construction, 2012, [3] Lim S, Buswell R A, Le T T, et al. Developments in construction-scale additive 21: 262-268. [2] http://www.d-shape.com manufacturing processes[J]. Automation in construction, 2012, 21: 262-268. [4] Le T T, Austin S A, Lim S, et al. Hardened properties of high-


performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [5] http://www.contourcrafting.org

可能迎来爆炸增长

1.研究背景—3D打印近期研究

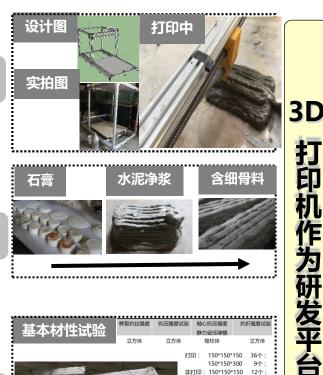
3D打印制品及其增强构件力学性能研究

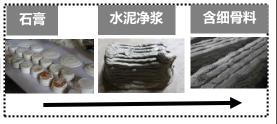
^[1] Feng P, Meng XM, Chen J F, et al. Mechanical properties of structures 3D printed with cementitious powders[J]. Construction and Building M aterials, 2015, 93: 486-497. (IF=2.710 (5-YEAR), JCR: Q1, SJR: Q1)

^[2] Feng P, Meng XM, Zhang HQ. Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials[J]. Composite Structures, 2015, 134: 331-342. (IF=3.500 (5-YEAR), JCR: Q1, SJR: Q1)

1.研究背景—3D打印近期研究

3D打印平台及时间窗口研究

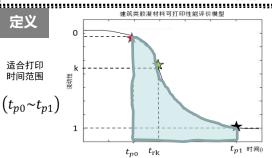


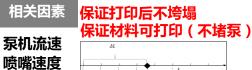


材料研究

试验分析

合适材料 流动度


时间窗口

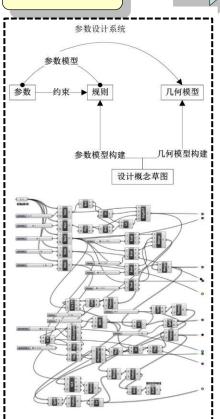


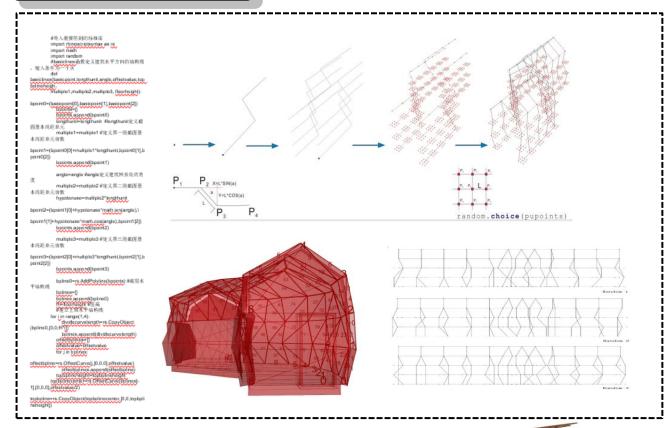
协同控制

双快水泥SAC P.O 42.5+速凝剂

路径设计 多次拌合

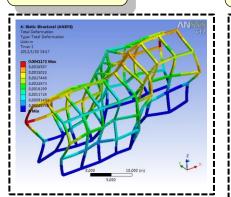
$$T_{j-1}^* \geq \sum_{i=1}^{j-1} \Delta T_i + t_{p0} \qquad T_j^* - \sum_{i=1}^{j-1} \Delta T_i \leq t_{p1}$$


1.研究背景—参数化设计

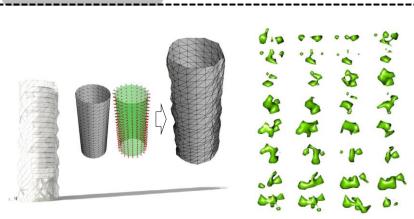

基于节点式参数化工具Grasshopper参数化设计

基本构建

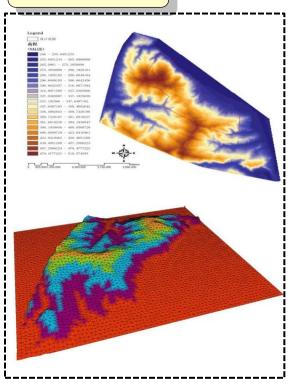
Python参数化模型

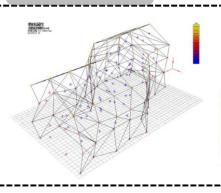


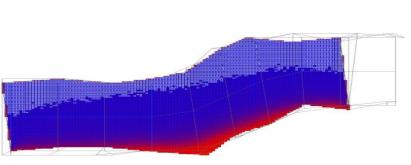
1.研究背景—参数化设计



基于参数化设计的协同分析


力学分析


动力学分析



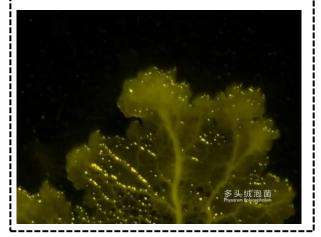
地理信息系统

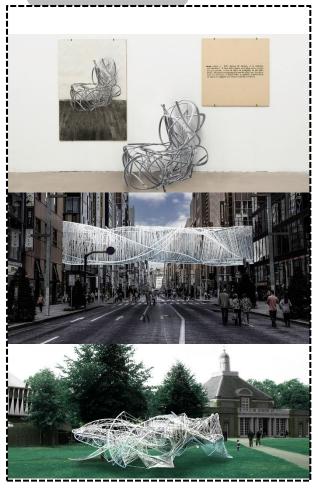
生态分析

主要内容

- 1、研究背景及意义
 - ——3D打印技术研究与应用
 - ——建筑参数化设计
- 2、研究内容
 - ——问题描述
 - ——方法选择
 - ——具体实现
- 3、讨论与展望

——仿生模拟与3D打印技术


2.研究内容—问题描述


对霉菌生长行为的仿生模拟

霉菌生长

建筑艺术

行为特点

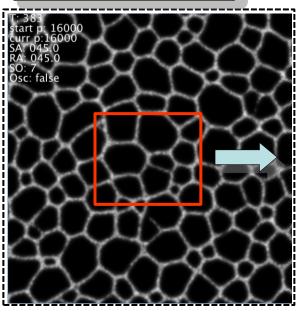
生命周期; 进化捕食管道;

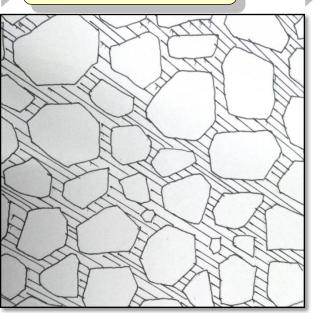
前人研究

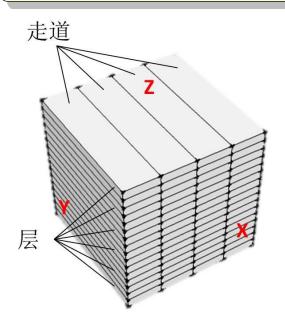
- [1] Nakagaki最短管道;
- [2] Tero基尔霍夫定律和哈根泊 肃叶定律建立模型,建立管道流 量和传导性的反馈关系;
- [3] Adamatzky用反应扩散的过程类比生长过程,利用二变量Oregonator模型研究构建网络和求解迷宫问题;
- [4] Jones构建多Agent模型模拟 多头绒泡菌网络的演化过程:

2.研究内容—问题描述

对霉菌生长行为的仿生模拟


2维模拟-空间网架




提取信息-骨架线

建模分析-空腔与力学性能

选择信息素通讯

备选算法

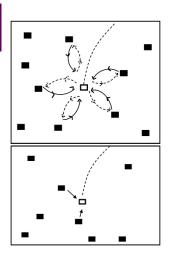
Particle Swarm Optimization

Ant System

Ant Colony System

Bees Algorithm

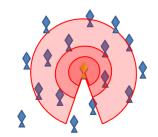
Bacterial Foraging Optimization Algorithm

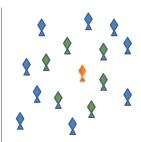

蚁群算法 Ant algorithms 信息素 Pheromone

Swarming

- · Several or more units
- Sustainable pulsing
- · Dispersed, non-linear

Guerrilla tactics


- · Only a few units involved
- · 1 raid or ambush only
- Dispersed, non-linear

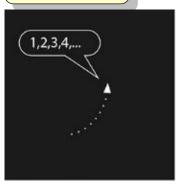


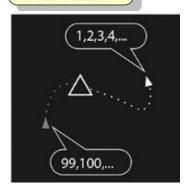
范围Range 环境Environment 觅食规则Foraging rules 移动规则Movement rules 避障规则Obstacle avoidance 信息素规则Pheromone rules

粒子群算法 Swarm Algorithms

临近粒子 Agent

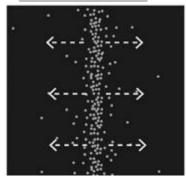
基本规则定义

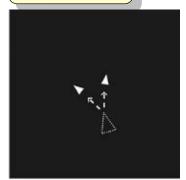

感知信息素 SENSE CA

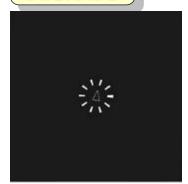

释放信息素 RELEASE CA

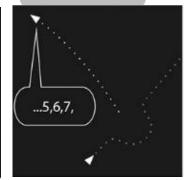
寿命计算 MEMORIZE

寿命更新 REFRESH


偏差概率 DIGRESS

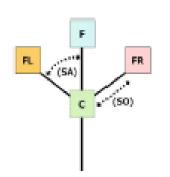

躲避障碍 AVOID OB


浓度扩散 DIFFUSE


分裂生长 REPRODUCE

食物释放 DEGRADE

死亡 AGING



基本规则定义

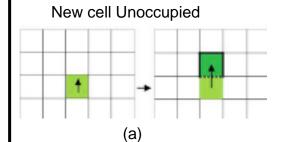
个体行为 Individual Behavior

群体互动 Collective Interaction 衍生现象 Emergent Phenomena

- Sample chemoattractant map values
- If (F>FL) && (F>FR)
 - continue facing same direction
- Else if (F< FL) && (F< FR)

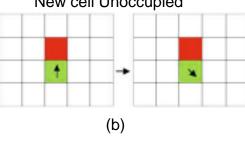
Rotate by RA towards larger of FL and FR

- Else if (FL<FR)


Rotate right by RA

- Else

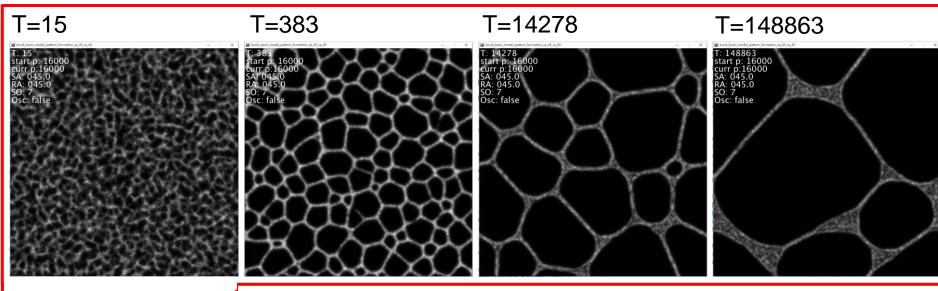
Continue facing same direction



空间碰撞规则

- ① Occupy New Cell
- Deposit Chemoattractant
- (3) Maintain Direction

New cell Unoccupied



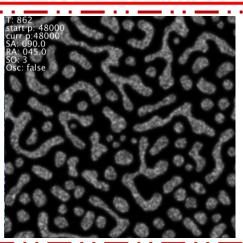
- 1 Stay In Current Cell
- Do Not Deposit Chemoattractant
- (3) Select Random Direction

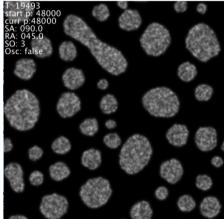
2.研究内容—具体实现

实现效果

Popsize=16000

SA=45


RA=45


SO=7

PCD=0

Speed=1

DeT=5

Popsize=48000 SA=90 RA=45 SO=3 PCD=0 Speed=1

DeT=5

主要内容

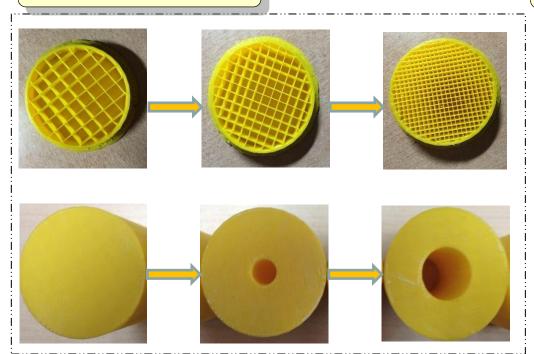
1、研究背景及意义

- ——3D打印技术研究与应用
- ——建筑参数化设计

2、研究内容

- ——问题描述
- ——方法选择
- ——具体实现

3、讨论与展望


——仿生模拟与3D打印技术

3.研究展望—3D打印与仿生模拟

目前所做探索

3D打印空心孔洞圆柱



	Class	Model	Number	Inner diameter	Average
				(mm)	weight (g)
	1		1-1	0	40.058
		Most	1-2	10	43.047
		thin	1-3	20	43.822
			1-4	30	43.685
			2-1	0	51.392
	2	Thin	2-2	10	53.024
			2-3	20	52.212

力学测试结果

霉菌路径仿生模拟

谢谢!

Email:

Zhang-hq15@mails.Tsinghua.edu.cn